Problem 5

Verify that, for $t>0, y(t)=\ln t$ is a solution to the differential equation

$$
2\left(\frac{d y}{d t}\right)^{3}=\frac{d^{3} y}{d t^{3}}
$$

Solution

Take derivatives of the given function.

$$
\begin{aligned}
y(t) & =\ln t \\
\frac{d y}{d t} & =\frac{d}{d t}(\ln t)=\frac{1}{t} \\
\frac{d^{2} y}{d t^{2}} & =\frac{d}{d t}\left(\frac{d y}{d t}\right)=\frac{d}{d t}\left(\frac{1}{t}\right)=-\frac{1}{t^{2}} \\
\frac{d^{3} y}{d t^{3}} & =\frac{d}{d t}\left(\frac{d^{2} y}{d t^{2}}\right)=\frac{d}{d t}\left(-\frac{1}{t^{2}}\right)=\frac{2}{t^{3}}
\end{aligned}
$$

Now plug these formulas into the ODE and check to see if the left side is equal to the right side.

$$
\begin{aligned}
& 2\left(\frac{d y}{d t}\right)^{3} \stackrel{?}{=} \frac{d^{3} y}{d t^{3}} \\
& 2\left(\frac{1}{t}\right)^{3} \stackrel{?}{=} \frac{2}{t^{3}} \\
& 2\left(\frac{1}{t^{3}}\right) \stackrel{?}{=} \frac{2}{t^{3}} \\
& \frac{2}{t^{3}}=\frac{2}{t^{3}}
\end{aligned}
$$

Since this is a true statement, $y=\ln t$ is a solution to the ODE.

